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We calculate the radiation of acoustic waves into the atmosphere by surface gravity
waves on the ocean surface. We show that because of the phase speed mismatch
between surface gravity waves and acoustic waves, a single surface wave radiates
only evanescent acoustic waves. However, owing to nonlinear terms in the acoustic
source, pairs of ocean surface waves can radiate propagating acoustic waves if the
two surface waves propagate in almost equal and opposite directions. We derive an
analytic expression for the acoustic radiation by a pair of ocean surface waves, and
then extend the result to the case of an arbitrary spectrum of ocean surface waves. We
present some examples for both the two-dimensional and three-dimensional regimes.
Of particular note are the findings that the efficiency of acoustic radiation increases
at higher wavenumbers, and the fact that the directionality of the acoustic radiation
is often independent of the shape of the spectrum.

1. Introduction
Low-frequency acoustic waves, or infrasonic waves, in the atmosphere range in

period from about 0.1 s to 100 s. Natural sources of infrasound include ocean surface
waves (Donn & Posmentier 1967; Posmentier 1967; Donn & Naini 1973; Rind 1980),
atmospheric turbulence particularly in breaking mountain waves (Larson et al. 1971;
Bedard 1978), auroral disturbances (Wilson 1969, 1975), volcanoes (Wilson 1969),
and earthquakes. A prominent man-made source is nuclear detonations. It is the
detection of the infrasound radiated by such detonations (and hence detection of
the detonations themselves) which accounts in large part for the interest in natural
sources of infrasound.

Infrasonic waves radiated by ocean surface waves are called ‘microbaroms’, and
have typical periods around 3–8 s and typical amplitudes of a few microbars (Donn
& Posmentier 1967; Donn & Naini 1973; Rind 1980). Theoretical analysis (Daniels
1952, 1962; Posmentier 1967) has indicated that microbaroms are radiated by standing
ocean waves. Microbaroms appear to be radiated at higher amplitudes from marine
storms, most probably owing to the higher ocean wave amplitudes in these storms.
Since microbaroms that are detected have propagated through a substantial portion
of the vertical extent of the atmosphere, and since their reflection is sensitive to the
temperature and wind structure of the atmosphere, they can be used as a probe of the
atmosphere (Donn & Rind 1971), in much the same way as acoustic p-modes are used
as a probe of the solar interior. Seismic waves called microseisms are also radiated by
standing ocean surface waves owing to their interaction with the sea bottom (Longuet-
Higgins 1950). The fact that microbaroms and microseisms share a common source
has been confirmed by the correlation of microbaroms and microseisms from the
same marine storm (Donn & Naini 1973; Rind 1980).
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The related problem of subsurface (i.e. into the ocean) acoustic radiation by ocean
surface waves and surface wind perturbations has also received attention (Guo
1987a, b, c; Ffowcs Williams & Guo 1991). Guo (1987b), in particular, considers
a turbulent airflow over the ocean surface which radiates not only ocean surface
waves, but also subsurface acoustic waves. Also contained in Guo’s formulation is the
radiation of subsurface acoustic waves by nonlinear interactions of the ocean surface
waves. Guo finds that the turbulent airflow over the ocean is a more effective acoustic
radiator than the interactions of surface waves. This may also prove to be the case
for acoustic radiation into the air above the ocean, although the frequency spectra of
observed microbaroms suggest that their source is in the frequency-doubling nonlinear
interactions of standing ocean surface waves.

To delineate the relevant parameter regime, note that a 3–8 s acoustic wave period
corresponds to a 1–3 km acoustic wavelength (using a sound speed of 340 m s−1).
Ocean surface waves with periods of 3–8 s have wavelengths of 15–100 m and phase
speeds of 5–12 m s−1, using the deep-water surface wave dispersion relation ω2 = gk.

Note that the phase speed of the ocean surface waves is much less than the phase
speed of an acoustic wave. In fact, the phase speed of ocean surface waves varies
with wavelength but remains less than the phase speed of acoustic waves for all
ocean-surface-wave wavelengths below 74 km; clearly, this encompasses all terrestrial
ocean surface waves.

This disparity in phase speeds implies that it is impossible for a single ocean surface
wave to radiate a propagating acoustic wave (Cook 1962). To see this, note that the
acoustic wave satisfies ωA = cAkA, where cA is the speed of sound and where kA
is the total (vertical and horizontal) acoustic wavenumber. The ocean surface wave
satisfies ωS = cSkS , where kS has only horizontal components, and where cS =

√
g/kS .

Now, the frequency and horizontal wavenumber of the acoustic wave radiated by a
single surface wave must match those of the surface wave. Using the two dispersion
relations, these conditions give k2

A−vert = k2
A−horiz((cS/cA)2− 1). However, since cS < cA,

kA−vert is imaginary and the acoustic wave is evanescent rather than propagating.
On the other hand, nonlinear combinations of ocean surface waves can radiate

propagating acoustic waves. As an example, the product of two ocean surface waves
propagating in equal and opposite directions has a component whose frequency and
wavenumber are the sum of the frequencies and wavenumbers of the two surface
waves. The sum of the frequencies is twice that of the individual surface waves,
but the sum of the wavenumbers is zero, since the surface waves are propagating
in equal and opposite directions. The radiated acoustic wave must now match the
frequency and horizontal wavenumber of the product of the surface waves. This
gives k2

A−vert = (2ωS )2/c2
A, which yields a real kA−vert and hence a propagating radiated

acoustic wave. In this paper, we will show that only pairs of ocean surface waves
which are propagating in directions that are close to equal and opposite radiate
propagating acoustic waves.

The present paper exploits the above facts and gives the general solution of the full
acoustic radiation equations with ocean surface waves as a source. The final result
gives in closed form the Fourier spectrum of acoustic waves radiated by a general
spectrum of ocean surface waves. The radiation of microbaroms has previously been
studied by Posmentier (1967); we revisit the problem in order to extend Posmentier’s
standing-wave result to the case of general combinations of ocean surface waves, and
to correct errors present in Posmentier’s formulation (see Appendix C).

The present paper is organized as follows. Section 2 presents the formal solution
of the equations governing the acoustic radiation by a moving surface bounding a
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layer of air. Section 3 specializes the formal solution to the case of two ocean waves
of arbitrary wavenumber and frequency. Section 4 uses the results of § 3 to develop a
closed form solution for the Fourier spectrum of the acoustic waves radiated by an
arbitrary spectrum of ocean surface waves in both two and three dimensions. Section
5 presents some examples of the results, and § 6 gives our conclusions. Mathematical
results as well as a discussion of Posmentier’s result are contained in three Appendices.

2. Acoustic radiation by a moving surface
We will solve for the acoustic radiation by ocean waves in the following way. We

will consider the fluctuating ocean surface as providing a moving lower boundary to
the overlying air. To a good approximation, the motion of the overlying air is given
by potential flow forced by the moving ocean surface. Relaxing this restriction would
introduce an additional quadrupole acoustic source from the vortices produced at the
air–water boundary layer, but this is beyond the scope of the present paper. Using
this potential flow, we will obtain the acoustic radiation through the full equations
for the radiation of acoustic waves from a moving boundary; these equations include
monopole sources (from the time-varying displacement of the air by the boundary),
dipole sources (from the time-varying potential-flow pressure distribution on the
boundary), and quadrupole sources (from the time-varying potential flow over the
moving boundary).

We begin with the general equation for the radiation of acoustic waves by a moving
boundary (see e.g. Dowling & Ffowcs Williams 1983):(

∂2

∂t2
− c2∇2

)
(H(f)ρ′) =

∂2

∂xi∂xj
(H(f)Tij)

− ∂

∂xj

(
Pij

∂f

∂xj
δ(f)

)
+
∂

∂t

(
ρ0ui

∂f

∂xi
δ(f)

)
, (2.1)

where c is the speed of sound, ρ′ is the acoustic density fluctuation, Tij = ρuiuj + Pij
is Lighthill’s stress tensor, and Pij is the flow pressure tensor. Taking z to be the
vertical coordinate and x and y to be the horizontal coordinates, the equation
f(x, y, z, t) = z − g(x, y, t) = 0 describes the ocean surface, where g(x, y, t) is the
departure of the surface from its unperturbed state. H(f) is the unit step function.
Once (2.1) has been solved for the acoustic density perturbation, the acoustic pressure
and flow fields can be obtained from the usual acoustic equations relating them to
the perturbed density.

Notice that the left-hand side of (2.1) contains the propagator for acoustic waves,
while the right-hand side contains non-acoustic terms. Equation (2.1) is derived
essentially by taking the full equations of fluid motion, reducing them to a single
equation, and putting the familiar acoustic propagator terms on one side of the
equation and everything else on the other side. The result is a form of Poisson’s
equation with the terms on the right-hand side of the equation being identified as the
acoustic sources. In particular, the first, second, and third terms on the right-hand
side are the quadrupole, dipole, and monopole sources, respectively (see e.g. Dowling
& Ffowcs Williams 1983).

Equation (2.1) describes the radiation of acoustic waves from both the moving
boundary and the flow resulting from the moving boundary. Equation (2.1) is solved by
computing the incompressible flow caused by the moving boundary and substituting
this flow into the right-hand side of (2.1). This approximation works well as long as
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the flow has a low Mach number, since in this case the acoustic component of the
flow is very small compared to the non-acoustic part. In our case, the non-acoustic
part is potential flow which can be calculated analytically (see Appendix A). The
result is Poisson’s equation for the radiated acoustic waves which can be solved in a
variety of ways; in what follows, we will use a Green’s function to obtain the solution.

We proceed with the formal solution to (2.1) by rewriting the acoustic source on
the right-hand side of (2.1) as

acoustic source =
∂

∂xi

(
(Tij − Pij) ∂f

∂xj
δ(f) +H(f)

∂Tij

∂xj

)
− ρ0

∂

∂t

(
ui
∂f

∂xi
δ(f)

)
, (2.2)

where we have used the fact that

∂H(f)

∂xj
=

∂f

∂xj
δ(f). (2.3)

Now, Lighthill’s tensor, Tij , is defined such that the flow equations can be written
as

ρ0

∂ui

∂t
= −∂Tij

∂xj
. (2.4)

Taking the divergence of (2.4) and using ∇ · u = 0 yields ∂2Tij/∂xi∂xj = 0. Using this
as well as the fact that Tij = ρuiuj + Pij , we find

acoustic source =
∂

∂xi

(
ρ0uiuj

∂f

∂xj
δ(f)

)
− ρ0

∂ui

∂t

∂f

∂xi
δ(f) + ρ0

∂

∂t

(
ui
∂f

∂xi
δ(f)

)
. (2.5)

Using the Green’s function of the three-dimensional wave equation (see e.g. Morse
& Feshbach 1953),

G(r, r′) =
1

|r − r′|δ
(
t− τ− |r − r

′|
c

)
, (2.6)

the acoustic field radiated by this source is given by

4πc2H(f)ρ′ =
∂

∂xi

∫
ρ0uiuj

|r − r′|
∂f

∂x′j
δ(f) δ

(
t− τ− |r − r

′|
c

)
d3r′ dτ

−ρ0

∫
1

|r − r′|
∂ui

∂t

∂f

∂x′i
δ(f) δ

(
t− τ− |r − r

′|
c

)
d3r′ dτ

+ρ0

∂

∂t

∫
ui

|r − r′|
∂f

∂x′i
δ(f) δ

(
t− τ− |r − r

′|
c

)
d3r′ dτ, (2.7)

where the functions inside the integrals are functions of the primed coordinates unless
otherwise noted. In taking the differentiations outside the integrals, we have used the
symmetry of the Green’s function in the primed and unprimed coordinates. The unit
step function H(f) multiplying the left-hand side of (2.7) serves only to indicate that
the acoustic field is valid above the moving boundary and not below it, so we will
omit it from here on.

This expression can be simplified by integrating the delta functions. In particular,
integrating over z′ amounts to substituting z′ = g(x, y, t) because of the δ(f) term.

Since we are only interested in the radiation of propagating waves, we restrict our
attention to the far field. At the moment, we only require distances far compared
to the wave height g, but later we will need the stronger restriction of distances far
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compared to an acoustic wavelength. In the far field,

|r − r′| = ((x− x′)2 + (y − y′)2 + (z − g(x, y, t))2)1/2 ' R
(

1− zg(x, y, t)

R2

)
, (2.8)

where we have defined

R = ((x− x′)2 + (y − y′)2 + z2)1/2. (2.9)

We will also restrict the wave height g to be small compared to an ocean wave
wavelength, which is reasonable as we are interested in wavelengths of many tens of
metres. This allows us to retain only terms linear and quadratic in the ocean wave
quantities and to discard higher-order terms. Of course, linear terms are larger in
amplitude, but, as discussed in § 1, they do not contribute to the acoustic radiation
and so quadratic terms are retained as well.

So, integrating over τ and retaining terms to second order in wave height, the
expression for the acoustic field becomes

4πc2 ρ
′

ρ0

=
∂

∂xi

∫
uiuz

R

∣∣∣∣
z′=0, τ=t−R/c

dx′ dy′ −
∫ (

∂uz

∂τ
+
∂2uz

∂τ2

zg

cR
+
∂2uz

∂τ∂z′
g

+
zg

R2

∂uz

∂τ
− ∂ux

∂τ

∂g

∂x′
− ∂uy

∂τ

∂g

∂y′

) ∣∣∣∣
z′=0, τ=t−R/c

1

R
dx′ dy′

+
∂

∂t

∫ (
uz+

∂uz

∂τ

zg

Rc
+
∂uz

∂z′
g+

zg

R2
uz − ux ∂g

∂x′
− uy ∂g

∂y′

)∣∣∣∣
z′=0, τ=t−R/c

1

R
dx′ dy′.

(2.10)

As mentioned previously, we assume that the air overlying the ocean is in potential
motion. The details of this potential flow are presented in Appendix A, where it
is shown that uz = ∂g/∂τ on z′ = 0. Using this, (2.10) can be reduced, after some
calculation, to

ρ′ = − ρ0

8πc3

∂

∂t

∫
z

R2
u2
z

∣∣∣∣
z′=0, τ=t−R/c

dx′ dy′, (2.11)

where we have omitted the intermediate steps as they contribute nothing of interest.
This is the general solution for the radiation of acoustic waves by ocean surface waves.
Note that it consists of a term quadratic in the surface wave magnitudes (recall that
higher-order terms have been discarded). It remains to substitute the vertical velocity
uz of the overlying air into (2.11) and solve for the radiated acoustic field. This will
be carried out in the next section.

3. Acoustic radiation by two ocean surface waves
In this section, we calculate the acoustic radiation from a pair of ocean surface

waves. Since the acoustic source is quadratic in ocean wave magnitude, the radiation
due to an arbitrary superposition of ocean surface waves is the superposition of
the radiation from all possible pairs. We first perform the calculation for the two-
dimensional case and then use the result to extend the calculation to general three-
dimensional acoustic radiation.
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3.1. Two-dimensional case

Consider, then, two ocean waves, such that

g(x, y) = a1 cos (ω1t− k1x+ φ1) + a2 cos (ω2t− k2x+ φ2), (3.1)

where the ω and the k terms are related by the deep water dispersion relation for

ocean surface waves: ω =
√
g|k|. The quantities a1, a2, φ1, and φ2 imbue the waves

with arbitrary amplitudes and phases, so that complete generality is maintained. In
keeping with the restriction to two dimensions, the ocean waves vary in x but not y.

The vertical velocity of the potential flow accompanying the ocean waves is (from
Appendix A)

uz = −ω1a1 sin (ω1t− k1x+ φ1)e
−|k1|z + ω2a2 sin (ω2t− k2x+ φ2)e

−|k2|z . (3.2)

We substitute this into (2.11), but, as mentioned previously, terms that depend on
only one ocean wave do not radiate acoustic waves. (This assertion can be tested
by retaining such terms in the derivation of this section; it can be shown that
their contribution to the acoustic radiation is zero.) Accordingly, we retain only the
cross-term between the two ocean waves so that

u2
z → 2ω1ω2a1a2 sin (ω1t− k1x+ φ1) sin (ω2t− k2x+ φ2)

= ω1ω2a1a2(− cos (ω+t− k+x+ φ+) + cos (ω−t− k−x+ φ−)), (3.3)

where k± = k1 ± k2, ω
± = ω1 ± ω2, and φ± = φ1 ± φ2, and where we have evaluated

the expression at z = 0.
Substituting (3.3) into (2.11), we find

ρ′ =
ρ0ω1ω2a1a2

8πc3

∂

∂t

∫
z

R2
(cos (ω+τ− k+x′ + φ+)

− cos (ω−τ− k−x′ + φ−))|z′=0, τ=t−R/c dx′ dy′. (3.4)

In the expression for R, we can take y = 0 because of the symmetry of the problem.
We use the substitution X = x− x′ to obtain

ρ′ =
ρ0ω1ω2a1a2

8πc3

∂

∂t

(
cos (ω+t− k+x+ φ+)

∫
z

R2
cos (k+X) cos

(
Rω+

c

)
dX dy

+ sin (ω+t− k+x+ φ+)

∫
z

R2
cos (k+X) sin

(
Rω+

c

)
dX dy

− cos (ω−t− k−x+ φ−)

∫
z

R2
cos (k−X) cos

(
Rω−

c

)
dX dy

− sin (ω−t− k−x+ φ−)

∫
z

R2
cos (k−X) sin

(
Rω−

c

)
dX dy

)
. (3.5)

These integrals are evaluated in Appendix B. Using (B 4) and (B 5), we find

ρ′ = −ρ0ω1ω2a1a2

4c2

∂

∂t

(
1

ω+
cos (ω+t− k+x+ φ+) sin (k+

z z)

− 1

ω+
sin (ω+t− k+x+ φ+) cos (k+

z z)

− 1

ω−
cos (ω−t− k−x+ φ−) sin (k−z z)

+
1

ω−
sin (ω−t− k−x+ φ−) cos (k−z z)

)
, (3.6)
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where

k±z =

√(
ω±

c

)2

− k±2. (3.7)

Rewriting, we have

ρ′ =
ρ0ω1ω2a1a2

4c2
(cos (ω+t− k+x+ φ+ − k+

z z)− cos (ω−t− k−x+ φ− − k−z z)). (3.8)

From (3.8), we see that the nonlinear combination of two ocean waves radiates
two acoustic waves with frequencies and horizontal wavenumbers equal to the sum
and difference of the two ocean waves. However, it can be shown that the acoustic
wave with the difference frequency is evanescent rather than propagating (essentially
due to the mismatch in phase speeds as discussed in § 1) so we disregard it. The final
result is then

ρ′ =
ρ0ω1ω2a1a2

4c2
cos (ω+t− k+x− k+

z z + φ+). (3.9)

In order for k+
z to be real, it can be shown that the propagation directions of the

two ocean waves must be very close to equal and opposite. We defer the proof of this
until § 4 where it will be more convenient.

3.2. Three-dimensional case

In this section, we calculate the acoustic radiation from a pair of ocean surface waves
in three dimensions. Consider two general ocean waves, such that

g(x, y) = a1 cos (ω1t− kx1x− ky1y + φ1) + a2 cos (ω2t− kx2x− ky2y + φ2). (3.10)

We will define wavenumber magnitudes such that

k1,2 = (k2
x1,x2 + k2

y1,y2)
1/2. (3.11)

The ω and the k terms are related by the deep-water dispersion relation for ocean
surface waves: ω =

√
g|k|. As in the two-dimensional derivation, the quantities

a1, a2, φ1, and φ2 give the waves arbitrary amplitudes and phases, so that complete
generality is maintained.

As shown in (2.11), the acoustic source goes as u2
z . For our three-dimensional ocean

waves, we have, retaining only cross-terms as before,

u2
z → 2ω1ω2a1a2 sin (ω1t− kx1x− ky1y + φ1) sin (ω2t− kx2x− ky2y + φ2)

= ω1ω2a1a2(− cos (ω+t− k+
x x− k+

y y + φ+) + cos (ω−t− k−x x− k−y y + φ−)),

(3.12)

where k±x,y = kx1,y1 ± kx2,y2, k
± = k1 ± k2, ω

± = ω1 ±ω2, and φ± = φ1 ±φ2, and where
we have evaluated the expression at z = 0.

Next, we apply the transformations

ξ± =
k±x x+ k±y y

k±
, (3.13)

η± =
k±x y − k±y x

k±
, (3.14)

to (3.12) to find

u2
z → ω1ω2a1a2(− cos (ω+t− k+η+ + φ+) + cos (ω−t− k−η− + φ−)). (3.15)
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Each cosine is now a function of only one horizontal coordinate, either η+ or η−, and
so the problem has become two-dimensional.

Next, note that the rest of the acoustic integral (2.11) is invariant under both the
transformations in (3.13) and (3.14), so that the solution for the acoustic radiation
due to u2

z given by (3.15) can be immediately obtained from the two-dimensional
acoustic radiation result (3.9). Doing so and using the transformations (3.13)–(3.14)
to transform the final result back to x and y rather than η and ξ, we find

ρ′ =
ρ0ω1ω2a1a2

4c2
cos (ω+t− k+

x x− k+
y y − k+

z z + φ+), (3.16)

where, by analogy with (3.7),

k+
z =

√(
ω+

c

)2

− (k+
x )2 − (k+

y )2. (3.17)

4. Acoustic radiation by a spectrum of ocean surface waves
4.1. Two-dimensional case

Now suppose that instead of a single pair of ocean surface waves, we have a
continuous spectrum of them, where the spectrum is given by A(k) such that the
ocean surface perturbation is given by the Fourier integral:

g(x, t) =

∫ +∞

−∞
A(k) cos (ωt− kx+ φ(k)) dk, (4.1)

and where ω =
√
g|k|.

In a similar fashion, we define the radiated acoustic wave spectrum to be B(Kx,Kz)
so that

ρ′(x, z, t) =

∫ +∞

−∞

∫ +∞

0

B(Kx,Kz) cos (ωt−Kxx−Kzz + φ(Kx,Kz)) dKz dKx, (4.2)

where ω = c
√
K2
x +K2

z .
Using (3.9) and (4.1), we have

ρ′ =
ρ0

4c2

∫ +∞

−∞

∫ +∞

−∞
A(k)A(k′)ωω′ cos ((ω+ω′)t−(k+k′)x−kzz+(φ+φ′)) dk dk′, (4.3)

where kz is given by k+
z in (3.7).

In order to obtain an expression for B(Kx,Kz), we rewrite (4.3) in the form of (4.2).
First, we use the transformation

Kx = k + k′, (4.4)

ξ = k − k′. (4.5)

With this substitution, the integral becomes

ρ′ =
ρ0

8c2

∫ +∞

−∞

∫ +∞

−∞
A(k)A(k′)ωω′ cos ((ω+ω′)t−Kxx−Kzz+ (φ+φ′)) dKx dξ, (4.6)

where

Kz =

(
g

2c2
|Kx + ξ|+ g

2c2
|Kx − ξ|+ 2g

2c2
|(Kx + ξ)(Kx − ξ)|1/2 −K2

x

)1/2

. (4.7)
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From (4.7), it is possible to show that, for Kz to be real, we must have |ξ| � |Kx|,
where we have used the fact that g/c2 is small. Using this inequality, (4.7) becomes

Kz '
(

2g

c2
|ξ| −K2

x

)1/2

(4.8)

to second order in g/c2. Using this expression, we substitute Kz for ξ (being careful
to take account of both positive and negative ξ) in (4.6) to find

ρ′ =
ρ0

4g

∫ +∞

−∞

∫ +∞

0

A(k)A(k′)ωω′ cos ((ω+ω′)t−Kxx−Kzz+(φ+φ′))Kz dKz dKx, (4.9)

where

k = 1
2
(Kx + ξ) =

c2

4g
(K2

x +K2
z ) + 1

2
Kx, (4.10)

k′ = 1
2
(Kx − ξ) = − c

2

4g
(K2

x +K2
z ) + 1

2
Kx, (4.11)

ω = (g|k|)1/2 ' 1
2
c(K2

x +K2
z )1/2 +

gKx√
2c

1

(K2
x +K2

z )1/2
, (4.12)

ω′ = (g|k′|)1/2 ' 1
2
c(K2

x +K2
z )1/2 − gKx√

2c

1

(K2
x +K2

z )1/2
, (4.13)

and where the final term in each expression is a small correction. Using these, and
retaining the lowest-order terms in g/c2, the final expression for the radiated acoustic
field is

ρ′ =
ρ0c

2

16g

∫ +∞

−∞

∫ +∞

0

A(k)A(k′) (K2
x +K2

z )Kz

× cos ((ω + ω′)t−Kxx−Kzz + (φ+ φ′)) dKz dKx. (4.14)

The Fourier spectrum of the radiated field is then given by

B(Kx,Kz) =
ρ0c

2

16g
Kz(K

2
x +K2

z ) A(k)A(k′)

=
ρ0c

2

16g
Kz(K

2
x +K2

z ) A

(
c2

4g
(K2

x +K2
z ) + 1

2
Kx

)
×A

(
− c

2

4g
(K2

x +K2
z ) + 1

2
Kx

)
. (4.15)

Since c2/g is large, we can, if A(k) varies sufficiently slowly, approximate (4.15) by

B(Kx,Kz) =
ρ0c

2

16g
Kz(K

2
x +K2

z ) A

(
c2

4g
(K2

x +K2
z )

)
A

(
− c

2

4g
(K2

x +K2
z )

)
. (4.16)

The ratio g/c2 in the above result has a special meaning; it is the wavenumber at
which the phase speeds of an ocean surface wave and an acoustic wave are equal. To
see this, note that the phase speed of an ocean surface wave is ω/k =

√
g/k, while the

phase speed of an acoustic wave is simply c, since acoustic waves are non-dispersive.
Equating these two, we find

KSA =
g

c2
, (4.17)
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Figure 1. The wavelength and period of a radiated acoustic wave as a function of the wavelength
of its surface-wave source as given in (4.19).

where the subscript SA stands for surface-acoustic. In terms of wavelength, this is

λSA =
2πc2

g
' 74 km, (4.18)

where we have used c = 340 m s−1 and g = 9.8 m s−2. Surface waves having wave-
lengths smaller than λSA are slower than acoustic waves with the same wavelength;
given the size of λSA, it is safe to say that the vast majority of ocean surface waves are
slower than acoustic waves. In fact, we have already used this fact in our derivation
of the acoustic radiation.

From (4.10), we see that the wavenumbers and wavelengths of acoustic and ocean
surface waves are related by

KA = 2
√
KSAkS , (4.19)

λA = 1
2

√
λSAλS . (4.20)

So, acoustic parameters are geometric averages of surface parameters with the char-
acteristic SA parameters. In figure 1, we plot the relation between λA and λS .

Consider next the direction of acoustic radiation. From (4.10), we see that k+ k′ =
Kx, so that ocean wave pairs which form a standing wave (k + k′ = 0) correspond
to Kx = 0, i.e. acoustic radiation in the vertical direction. Acoustic radiation at some
angle to the vertical has Kx 6= 0 and so is due to ocean wave pairs which almost, but
not quite, form a standing wave pair. To see how close they are to a standing wave
pair, we use (4.10) to obtain

|k + k′|
|k − k′| =

2KSAKx

K2
x +K2

z

. (4.21)

As an example, for an ocean wave of wavelength 200 m, (4.21) gives |k+k′|/|k−k′| '
0.005. Our interest is primarily in ocean waves whose wavelengths range from 100 m
to 400 m; for this range, pairs of waves must be roughly within a fraction of a per
cent of propagating in equal and opposite directions in order to radiate acoustic
waves.
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4.2. Three-dimensional case

Next consider the case of a general spectrum of ocean surface waves propagating in
arbitrary horizontal directions such that the ocean surface perturbation is given by
the Fourier integral:

g(x, y, t) =

∫ +∞

−∞

∫ +∞

−∞
A(kx, ky) cos (ωt− kxx− kyy + φ(kx, ky)) dkx dky, (4.22)

where ω =
√
g|k|.

We define the radiated acoustic wave spectrum to be B(Kx,Ky,Kz) such that

ρ′(x, y, z, t) =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0

B(Kx,Ky,Kz)

× cos
(
ωt−Kxx−Kyy −Kzz + φ(Kx,Ky,Kz)

)
dKz dKy dKx, (4.23)

where ω = c
√
K2
x +K2

y +K2
z .

Using (3.9) and (4.22), we have

ρ′ =
ρ0

4c2

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
A(kx, ky)A(k′x, k

′
y)ωω

′

× cos
(
(ω + ω′)t− (kx + k′x)x− (ky + k′y)y − k+

z z + (φ+ φ′)
)

dkx dky dk′x dk′y,
(4.24)

where k+
z is defined in (3.17). We use the variable substitutions

Kx = kx + k′x, (4.25)

ξx = kx − k′x, (4.26)

Ky = ky + k′y, (4.27)

ξy = ky − k′y, (4.28)

to transform the integral into

ρ′ =
ρ0

16c2

∫ 2π

0

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
A(kx, ky)A(k′x, k

′
y)ωω

′

× cos ((ω + ω′)t−Kxx−Kyy − k+
z z + (φ+ φ′)) dKx dKyξ dξ dθξ, (4.29)

where ξ and θξ are the polar representation of ξx and ξy: ξ
2 = ξ2

x + ξ2
y and tan θξ =

ξy/ξx.
Next we define

Kz = k+
z =

((
ω + ω′

c

)2

−K2
x −K2

y

)1/2

,

(4.30)

so that, using the dispersion relation for the ocean surface waves, we find

K2
z = KSA(|k|+ |k′|+ 2(|k| |k′|)1/2)−K2

x −K2
y . (4.31)

As previously, this equation along with (4.25)–(4.28) and the fact that g/c2 � 0 leads
us to the conclusion that |K | � |ξ| so that

K2
z ' 2KSA(ξ2

x + ξ2
y)

1/2 −K2
x −K2

y = 2KSAξ −K2
x −K2

y . (4.32)
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Using this, we substitute Kz for ξ in (4.29):

ρ′ =
ρ0

64K2
SA

∫ 2π

0

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
A(kx, ky)A(k′x, k

′
y)

KzK
4 cos (cKt−Kxx−Kyy −K+

z z + (φ+ φ′)) dKx dKy dKz dθξ, (4.33)

so that the acoustic spectrum is given by

B(Kx,Ky,Kz) =
ρ0

64K2
SA

KzK
4

∫ 2π

0

A(kx, ky)A(k′x, k
′
y) dθξ, (4.34)

where

kx =
K2

4KSA

cos θξ + 1
2
Kx, (4.35)

ky =
K2

4KSA

sin θξ + 1
2
Ky, (4.36)

k′x = − K2

4KSA

cos θξ + 1
2
Kx, (4.37)

k′y = − K2

4KSA

sin θξ + 1
2
Ky. (4.38)

5. Examples
5.1. Standing ocean wave

The simplest possible surface-wave source of acoustic radiation is a standing surface
wave. Such a case has previously been studied by Posmentier (1967), but we believe
that Posmentier’s results are in error, a matter we discuss in Appendix C. To study
this case, we use the results of § 3, setting a1 = a2 = a, ω1 = ω2 = ω, k1 = −k2 = k,
and φ1 = φ2 = 0. Using these values, we have

g(x, y) = a cos (ωt− kx) + a cos (ωt+ kx) = 2a cos (ωt) cos (kx). (5.1)

For this case, (3.9) gives

ρ′ =
ρ0ω

2a2

4c2
cos (2ωt− k+

z z), (5.2)

where k+
z = 2ω/c.

Notice that the acoustic wave has twice the frequency of the standing ocean wave,
and that the acoustic wave does not depend on x, the horizontal coordinate. Both of
these results are somewhat disquieting, but they are due to the fact that the source
of the acoustic wave is quadratic in the ocean wave. (Recall from § 1 that, while
source terms linear in the ocean wave are present, they radiate evanescent rather than
propagating acoustic waves because of the mismatch in phase speeds between ocean
surface waves and acoustic waves.) Specifically, from (2.11), the source of the acoustic
waves goes as u2

z . For the standing wave case, we have

u2
z = 4a2ω2 sin2 (ωt) cos2 (kx) = a2ω2[1 + cos (2kx)− cos (2ωt) cos (2kx)− cos (2ωt)].

(5.3)
Note that after we expand the square, we are left with four terms (in square brackets
in (5.3)). The first two do not vary in time and so do not radiate acoustic waves. At
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first glance, the third term looks as if it could radiate acoustic waves, but it can be
shown that its frequency and wavenumber are such that it can only radiate evanescent
acoustic waves and not propagating acoustic waves. Finally, the fourth term varies in
time with a frequency of 2ω, but does not vary in space; this is the term responsible
for the acoustic radiation given by (5.2). The resulting acoustic waves inherit the
doubled frequency and the lack of horizontal variation directly from this source term.

This makes the point that the radiation of acoustic waves from a standing ocean
wave is not due to a simple piston effect from the rhythmic raising and lowering of
the air above the wave. Rather, the acoustic emission is a complicated interaction of
the incompressible flow of the air over the ocean surface with the ocean surface wave
which itself excites the air flow in the first place. In particular, all three of the usual
acoustic source terms (monopole, dipole, and quadrupole) play a role.

5.2. Two-dimensional spectra

Before discussing specific examples, consider the functional form of the general
acoustic spectrum, which we reproduce here for convenience:

B(Kx,Kz) =
ρ0

16KSA

[Kz(K
2
x +K2

z )] A

(
K2
x +K2

z

4KSA

)
A

(
−K

2
x +K2

z

4KSA

)
, (5.4)

where A is the ocean wave spectrum. The term in square brackets in (5.4) may be
considered the spectral efficiency of acoustic radiation by ocean surface waves. This
term increases with increasing |K | so that ocean waves with smaller wavelengths
radiate acoustic waves more efficiently. This is due to the fact that smaller ocean
waves have a higher temporal frequency (ω =

√
g|k|); since the acoustic wave source

is proportional to the time variation of a flow and its boundaries, higher-frequency
ocean waves radiate more acoustic energy.

Consider the angular dependence of the acoustic radiation. Defining tan θ = Kx/Kz

(θ is the angle of the acoustic wave propagation with the vertical), we see that the
acoustic radiation goes as F(K) cos θ for any ocean wave spectrum, where F(K)
depends on the shape of the ocean wave spectrum. So, the acoustic radiation is a
maximum in the vertical direction, zero in the horizontal, and varies as a cosine
between the two.

As an example, take the case of a Gaussian spectrum of ocean waves in two
dimensions given by

A(k) = A0e
−k2/σ2

. (5.5)

From (4.16), we find the acoustic spectrum to be:

B(Kx,Kz) =
ρ0A

2
0

16KSA

Kz(K
2
x +K2

z ) exp

(
− (K2

x +K2
z )2

8σ2K2
SA

)
. (5.6)

This spectrum is plotted as a contour plot in figure 2. The spectrum has a maximum
which can be shown analytically to reside at (Kx,Kz) = (0, 61/4(σKSA)1/2). The location
of this maximum is determined by the combination of the enhanced efficiency of
acoustic radiation at higher wavenumbers with the larger ocean wave power in the
Gaussian spectrum at low wavenumbers; the two competing effects produce a relative
maximum at an intermediate wavenumber. Figure 3(a) shows the acoustic spectrum
along the Kz axis along with the ocean wave spectrum subject to the wavenumber
transformation given by (4.20) and shown in figure 1.

In fact, for any ocean wave spectrum it is easy to see that the enhanced efficiency of
acoustic radiation at high wavenumbers will always cause a shift in the wavenumber of
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Figure 2. Contour plot of the acoustic wave spectrum from a Gaussian spectrum of two-dimensional
ocean surface waves. The wavenumbers are normalized by

√
σKSA, the geometric average of the

Gaussian width and KSA, while the spectrum is normalized by ρ0A
2
0σ

3/2K
1/2
SA /16. The contour levels

are (0.01, 0.25, 0.75, 1.25, 1.75). Note the presence of a maximum on the Kz axis, indicating that the
maximum power is radiated vertically.
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Figure 3. The acoustic spectrum (solid line) on the Kz-axis and the ocean surface wave spectrum
(dotted line) transformed from surface-wave wavelength to acoustic-wave wavelength using the
relation in (4.19). (a) The two-dimensional Gaussian surface wave spectrum (5.5) and its resulting
acoustic spectrum (5.6). (b) The two-dimensional weighted Gaussian surface wave spectrum (5.7) and
its resulting acoustic spectrum (5.8). In (a), the surface wave spectrum has been normalized by A0,

and the acoustic wave spectrum has been normalized by ρ0A
2
0σ

3/2K
1/2
SA /16. In (b), the surface wave

spectrum has been normalized by A0σKSA, while the acoustic wave spectrum has been normalized

by 5ρ0A
2
0σ

11/2K
1/2
SA /512.

maximum radiated acoustic power. For example, a physically reasonable ocean wave
spectrum will be zero at k = 0 (infinite wavelength), zero at k →∞ (zero wavelength),
and a maximum somewhere in between. The resulting acoustic spectrum will have
a maximum shifted towards a larger wavenumber, since the acoustic radiation is
enhanced at larger wavenumbers. Because of the cos θ dependence in direction,
the maximum in the acoustic spectrum will always lie on the Kx = 0 line in the
(Kx,Kz)-plane.
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Consider the ocean wave spectrum given by

A(k) = A0k
2e−k

2/σ2

. (5.7)

This spectrum has a maximum at an intermediate wavenumber. From (4.16), we find
the resulting acoustic spectrum to be:

B(Kx,Kz) =
ρ0A

2
0

16KSA

Kz(K
2
x +K2

z )5

(4KSA)4
exp

(
− (K2

x +K2
z )2

8σ2K2
SA

)
. (5.8)

Both the acoustic spectrum along the Kz axis and the ocean wave spectrum subject
to the transformation (4.20) are shown in figure 3(b). The maximum in the acoustic
spectrum lies at about Kz/

√
KSAσ = 2.2, while the maximum in the transformed

ocean wave spectrum lies at about Kz/
√
KSAσ = 2.0.

5.3. Three-dimensional spectra

The acoustic spectrum in three dimensions is given by (4.34). An examination of it
reveals that it is essentially the same as the acoustic spectrum in two dimensions
except that the ocean wave spectrum is integrated over the azimuthal angle θξ . As in
the two-dimensional case, the efficiency of acoustic radiation increases as wavenumber
increases, and the angular dependence of the acoustic radiation varies as cos θ, where
θ is the angle of the acoustic radiation with the vertical.

Consider an ocean wave spectrum that is cylindrically symmetric in kx and ky; the

ocean wave spectrum A can be redefined as Ã such that

A(kx, ky) = Ã(
√
k2
x + k2

y). (5.9)

Then the integrand in (4.34) does not depend on θξ , and a straightforward integration
gives

B(Kx,Ky,Kz) =
ρ0π

32K2
SA

KzK
4

[
Ã

(
K2

4KSA

)]2

. (5.10)

As an example of this case, consider a Gaussian ocean wave spectrum given by

A(k) = A0e
−(k2

x+k2
y )/σ2

. (5.11)

The corresponding acoustic spectrum is

B(Kx,Ky,Kz) =
ρ0πA

2
0

32K2
SA

KzK
4 exp

(
− K4

8σ2K2
SA

)
. (5.12)

A contour plot of this acoustic spectrum is shown in figure 4. As expected from
the increased radiation efficiency at higher wavenumbers, there is a maximum in the
spectrum at about Kz = 1.75

√
KSAσ.

As in the two-dimensional case, the enhanced radiation of acoustic waves at larger
wavenumbers will cause a shift in the location of the acoustic maximum. Figure 5
shows the shift for the case

A(k) = A0(k
2
x + k2

y)e
−(k2

x+k2
y )/σ2

, (5.13)

whose corresponding acoustic spectrum is

B(Kx,Ky,Kz) =
ρ0πA

2
0

32K2
SA

KzK
12

256K4
SA

exp

(
− K4

8σ2K2
SA

)
. (5.14)
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Figure 4. Contour plot of the radiated acoustic spectrum from a Gaussian spectrum of
three-dimensional ocean surface waves. The wavenumbers are normalized by

√
σKSA, the geometric

average of the Gaussian width and KSA, while the spectrum is normalized by ρ0πA
2
0σ

5/2K
1/2
SA /32.

The contour levels are (1,2,3,4,5). Note the presence of a maximum at a non-zero Kz .
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Figure 5. The acoustic spectrum (solid line) on the Kz-axis and the ocean surface wave spectrum
(dotted line) transformed from surface-wave wavelength to acoustic-wave wavelength using the
relation in (4.19). (a) The three-dimensional Gaussian surface wave spectrum (5.11) and its resulting
acoustic spectrum (5.12). (b) The weighted three-dimensional Gaussian surface wave spectrum (5.13)
and its resulting acoustic spectrum (5.14). In (a), the surface wave spectrum has been normalized

by A0, and the acoustic wave spectrum has been normalized by ρ0πA
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SA /8. In (b), the

surface wave spectrum has been normalized by A0σKSA, while the acoustic wave spectrum has been

normalized by 25ρ0πA
2
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13/2K
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SA /1024.

6. Discussion
In this paper, we have presented a calculation of the radiation of low-frequency

acoustic waves by ocean surface gravity waves. We show that the radiation of
propagating acoustic waves is strictly a consequence of nonlinear combinations of
ocean surface waves, particularly pairs whose propagation directions are sufficiently
close to being equal and opposite. The amplitudes of the two ocean waves need not
be equal, i.e. the two ocean waves need not form a standing wave in the usual sense.
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If the ocean wave amplitudes are equal to A and B, respectively, with A < B, then the
acoustic radiation is proportional to AB. So, an ocean surface where the ocean waves
are propagating mostly in one direction, with only a small amount propagating in
the opposite direction, will still radiate acoustic waves.

We derive simple expressions for the spectrum of the acoustic field radiated from a
general spectrum of ocean waves. In the two-dimensional case, the result is a simple
closed-form expression, whereas in the three-dimensional case, the result is in terms
of a one-dimensional integral. In both cases, the result is nonlinear in the ocean
wave spectrum. Although a given ocean wave spectrum produces a unique acoustic
spectrum, the reverse is not true. That is, for a given acoustic spectrum there are a
multiplicity of different ocean wave spectra that could be responsible. This is due to
the fact that the value of the acoustic spectrum at a particular wavenumber depends
on the value of the ocean wave spectrum at several wavenumbers; for a single acoustic
wave these are the two equal and opposite ocean waves that couple to radiate the
acoustic wave. So, for example the ocean wave pairs A sin (ωt− kx) +B sin (ωt+ kx),
B sin (ωt− kx) + A sin (ωt+ kx), 2A sin (ωt− kx) + B/2 sin (ωt+ kx) each radiate the
same acoustic wave, since in each case the product of their amplitudes is the same.
In the three-dimensional case, the situation is more complicated since there is an
additional degree of freedom, but the fundamental effect is the same.

The expression for the acoustic spectrum from a general ocean wave spectrum shows
some interesting features. The first is that the radiated acoustic spectrum favours ocean
waves with shorter wavelength in that the acoustic spectrum is proportional to K3 in
two dimensions and K5 in three dimensions. This is reasonable in light of the fact
that short-wavelength ocean waves vary faster in time than long-wavelength ocean
waves; the acoustic source is proportional to the time derivative of the ocean wave,
and so it scales accordingly.

This feature has implications for the spectral shape of the radiated acoustic waves,
as demonstrated in the examples discussed in § 5. In particular, if an ocean wave
spectrum has a peak at some wavenumber, then the preferential radiation of acoustic
waves from short ocean waves will shift the corresponding peak in the acoustic wave
spectrum to shorter wavelengths.

A second interesting result is that the directionality of the radiated acoustic wave is
always cos θ, where θ is the angle of the acoustic wave’s propagation with the vertical.
This is independent of the wavenumber of the acoustic wave and, remarkably, the
particular shape of the ocean wave spectrum. The direction of a radiated acoustic
wave is determined by the wavenumbers of the pair of ocean waves responsible
for the radiation. Acoustic waves which propagate strictly vertically are radiated by
standing ocean waves whereas acoustic waves which have a horizontal component of
propagation are radiated by ocean wave pairs which are ‘almost’ standing.

Support for this work was provided by the Department of Energy under grant
DE-FC04-98AL79770.

Appendix A. Potential flow above an ocean surface wave
Consider the flow of air above an ocean surface wave. We assume that the ocean

wave is small in amplitude (kxa � 1), and, for simplicity, we ignore the vorticity
generated by the no-slip condition on the ocean surface. The air flow is then potential
flow with the kinematic boundary condition df/dt = 0 where f(x, z, t) = 0 defines the
location of the ocean surface.
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For the case of a single surface wave propagating in the x̂ direction with an
amplitude a, the ocean surface is given by

f(x, z, t) = z − g(x, t) = z − a cos (ωt− kxx+ φ) = 0, (A 1)

where g(x, t) is the departure of the ocean surface from its unperturbed state. To the
lowest order of the small parameter ka, the potential flow of the overlying air is

Φ = a
ω

|kx|e
−|kx|z sin (ωt− kxx+ φ). (A 2)

The corresponding velocity field is given by

ux = −aω kx

|kx|e
−|kx|z cos (ωt− kxx+ φ), (A 3)

uz = −aωe−|kx|z sin (ωt− kxx+ φ). (A 4)

These solutions are for a single surface wave, but are superposable for multiple
surface waves. Note that uz = ∂g/∂t, a fact that will prove useful in the derivation of
the acoustic field.

Appendix B. Evaluation of integrals

Integrals of the following form occur in the acoustic field derivation:∫ ∞
−∞

∫ ∞
−∞

z

R2
cos (kX)trig

(
Rω

c

)
dX dy, (B 1)

where the function trig is either a sine or cosine. We evaluate these integrals in this
Appendix.

In what follows, we perform the integration for the case where trig is a cosine; the
case where trig is a sine follows in a similar fashion and we will give only the final
result. To begin, then, we perform the y integration first, changing the integration
variable from y to η = R/

√
X2 + z2, to find∫ ∞

−∞
1

R2
cos

(
Rω

c

)
dy

=
2

(X2 + z2)1/2

∫ ∞
1

cos (η(ω/c)(X2 + z2)1/2)

η(η2 − 1)1/2
dη

= −2

∫ ∞
1

∫ ω/c

0

sin (ξη(X2 + z2)1/2)

(η2 − 1)1/2
dξ dη +

2

(X2 + z2)1/2

∫ ∞
1

dη

η(η2 − 1)1/2

= −π
∫ ω/c

0

J0(ξ(X2 + z2)1/2) dξ +
π

(X2 + z2)1/2
, (B 2)

where we have used integrals 3.753.3 and 2.275.4 from Gradshteyn & Ryzhik (1980).



Acoustic radiation by ocean surface waves 19

The full integral is then∫ ∞
−∞

∫ ∞
−∞

z

R2
cos (kX) cos

(
Rω

c

)
dX dy

= −2πz

∫ ∞
0

∫ ω/c

0

J0(ξ(X2 + z2)1/2) cos (kX) dξ dX

+2πy

∫ ∞
0

∫ ω/c

0

cos (kX)

(X2 + z2)1/2
dξ dX

= −2πz

∫ ((ω/c)2−k2)1/2

0

cos (ζz)

(ζ2 + k2)1/2
dζ, (B 3)

where we have used integral number 6.677.7 of Gradshteyn & Ryzhik (1980), and
where we have discarded terms corresponding to evanescent waves.

We are interested in the far-field radiated acoustic wave; so, we expand this integral
for large z as follows:∫ ∞

−∞

∫ ∞
−∞

z

R2
cos (kX) cos

(
Rω

c

)
dX dy

= −2πz

(
sin (ζz)

z(ζ2 + k2)1/2

∣∣∣∣((ω/c)2−k2)1/2

0

+

∫ ((ω/c)2−k2)1/2

0

sin (ζz)

z

ζ

(ζ2 + k2)3/2
dζ

)

→ −2πc

ω
sin

(((ω
c

)2 − k2

)1/2

z

)
, (B 4)

where we have retained only the leading term.
Following a similar sequence of steps, and discarding terms corresponding to

evanescent waves, we find∫ ∞
−∞

∫ ∞
−∞

z

R2
cos (kX) sin

(
Rω

c

)
dX dy → −2πc

ω
cos

(((ω
c

)2 − k2

)1/2

z

)
. (B 5)

Appendix C. Comparison with Posmentier’s result
For the case of a standing ocean surface wave, Posmentier calculates the horizontally

averaged pressure on the ocean surface owing to the air above by equating the
acceleration of the centre of mass of the air with the pressure applied on the air by
the ocean surface. Since the acceleration of the centre of mass of the air is known,
this allows the horizontally-averaged pressure on the ocean surface to be calculated.
Posmentier then uses this pressure as a boundary condition on the acoustic field in
the air.

The error in this approach is that the ocean-surface pressure that Posmentier
calculates corresponds to the pressure of the flow of the air, not the pressure of the
acoustic field. To see this, note that equating the motion of the centre of mass of the
air to the pressure on the ocean surface neglects the air pressure at infinity (or at
some suitable position far away from the ocean surface where the volume of air under
consideration is closed). Usually this is a valid assumption, but in this case we are after
acoustic waves which propagate vertically, and hence have a non-trivial pressure at all
distances from the ocean surface. Hence, acoustic waves are inadvertantly neglected,
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and what is calculated is the pressure due to the flow of air as it accommodates the
movement of its lower boundary, i.e. the ocean surface.

To cement this point, consider the potential flow of the air above an ocean standing
wave. Since the air above the ocean surface is in potential flow, the flow equations
admit the pressure as an exact Bernoulli integral of the flow:

P = −ρ0u
2

2
− ∂Φ

∂t
. (C 1)

Let the standing ocean wave be given by

g(x, t) = a cos (ωt− kxx) + a cos (ωt+ kxx) = 2a cos (ωt) cos (kxx). (C 2)

From Appendix A, the potential air flow above the standing wave is

Φ =
2aω

k
e−kz sin (ωt) cos (kx), (C 3)

ux = −2aωe−kz sin (ωt) sin (kx), (C 4)

uy = −2aωe−kz sin (ωt) cos (kx). (C 5)

Substituting these into (C 1), evaluating the result at z = g(x, t), and taking the
horizontal average, we find

〈P 〉 = 2ρ0a
2ω2 cos (2ωt), (C 6)

where the brackets denote horizontal average. (Note that the result for the pressure is
second order in the ocean wave parameters, but we use only a first-order expression
for ∂Φ/∂t in (C 1). This is justified by the fact that the second-order component of Φ
satisfies Laplace’s equation ∇2Φ = 0; under the boundary condition Φ→ 0 as z →∞,
it can be shown that any solution to ∇2Φ = 0 has zero average, except the trivial
(constant) solution, which we ignore through a choice of a gauge for Φ.) This is the
same as obtained by Posmentier by equating the acceleration of the centre of mass of
the air to the average pressure at the ocean surface. (Note, though that Posmentier’s
equaton (5) has a sign error, as can be seen by using Posmentier’s (3) and (4) to
obtain (5).)

Even with the above errors, Posmentier still comes remarkably close to the right
answer for the acoustic pressure perturbation P ′ on the ocean surface.

P ′ = −2ρ0a
2ω2 cos (2ωt), (C 7)

whereas our result (using ω1 = ω2 = ω, k1 = −k2 = k, and a1 = a2 = a in (3.9)) gives:

P ′ = 1
4
ρ0a

2ω2 cos (2ωt). (C 8)

The two solutions differ by a factor of −8, but have the same functional forms. The
reason for the similarity in the two answers is that there is only one combination of
parameters that gives the correct dimensions for an acoustic pressure, provided that it
is realized that the nonlinear interaction of two ocean waves is necessary for acoustic
radiation. Of course, a full derivation, such as ours, is required to obtain the correct
prefactor.
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